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a b s t r a c t 

Using data on 50 million home sales from the last U.S. housing cycle, we document that 

much of the variation in volume came from the rise and fall in speculation. Cities with 

larger speculative booms have larger price booms, sharper increases in unsold listings as 

the market turns, and more severe busts. We present a model in which predictable price 

increases endogenously attract short-term buyers more than long-term buyers. Short-term 

buyers amplify volume by selling faster and destabilize prices through positive feedback. 

Our model matches key aggregate patterns, including the lead–lag price–volume relation 

and a sharp rise in inventories. 

© 2022 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

The housing market in the United States underwent a

tumultuous cycle between 20 0 0 and 2011. The rise and

fall in house prices caused several problems for the U.S.

economy. During the boom, a surge in housing invest-

ment drew resources into construction from other sectors

( Charles et al., 2018 ) and contributed to a capital overhang

that slowed the economic recovery ( Rognlie et al., 2017 ).

During the bust, millions of households lost their homes
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in foreclosure, and falling house prices led many others 

to cut consumption ( Mayer et al., 2009; Mian et al., 2013; 

2015; Guren and McQuade, 2020 ). Large real estate cycles 

are not unique to the U.S. ( Mayer, 2011 ) or to this time pe- 

riod ( Case, 2008; Glaeser, 2013 ). Given the economic costs 

of these recurring episodes, understanding their cause is 

critical. 

This paper presents evidence that speculation was a 

key driver of this real estate cycle. 1 Three stylized facts 

from the cycle guide our analysis. First, prices and volume 

jointly rise and fall throughout the cycle. Second, volume 

falls before prices, resulting in a pronounced lead–lag rela- 

tion between prices and volume. Third, the period during 

which prices continue to rise despite falling volume co- 

incides with rapidly accumulating unsold listings. We re- 

fer to this period as the quiet , which is preceded by the 
1 Harrison and Kreps (1978 , p. 323) define speculation as follows: “In- 

vestors exhibit speculative behavior if the right to resell a stock makes 

them willing to pay more for it than they would pay if obliged to hold it 

forever.”
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boom and followed by the bust . These stylized facts hold on

average across cities and are especially pronounced in

cities with larger cycles. They suggest that focusing on who

was most active during each phase of the cycle can provide

insight on the underlying mechanisms. 

We study the behavior of speculative homebuyers dur-

ing each of these three phases of the housing cycle using

transaction-level data from CoreLogic on 50 million home

sales between 1995 and 2014. We measure speculative

buying and selling across 115 metropolitan statistical areas

(MSAs), which represent 48% of the U.S. housing stock. We

pursue two complementary approaches to identify specu-

lative activity. First, following Bayer et al. (2020) , we clas-

sify transactions based on their realized holding periods,

denoting those buyers who resell the property within three

years as short-term buyers. Second, following Chinco and

Mayer (2015) , we classify transactions based on the in-

ferred occupancy status of the property, denoting buyers

who list a mailing address distinct from the property ad-

dress as non-occupant buyers. We supplement our trans-

action data with a separate CoreLogic data set on homes

listed for sale, sourced from a consortium of local multiple

listing service (MLS) boards. We link these data to trans-

action records to study the role of speculative buyers for

inventory dynamics across MSAs. 

The data reveal a strong relation between the differen-

tial entry of speculative buyers and the size of the cycle.

While overall volume increases substantially during the

boom of 20 0 0–20 05, both short-term and non-occupant

volume rise dramatically more. In an accounting sense,

growth in speculative volume explains 40% to 50% of total

volume growth. This relation is also strong in the cross-

section, as speculative volume growth can account for 30%

to 50% of total volume growth across MSAs. Cities with

stronger speculative volume booms also experience larger

house price booms: MSAs with a one standard deviation

larger short-volume and non-occupant boom see 25 and

15 percentage point larger cumulative price increases, re-

spectively. 

As the volume boom ends, price growth slows but

remains positive, and unsold listings accumulate. Across

MSAs, these patterns are more pronounced in cities

with larger speculative volume booms. Our linked listing-

transaction data further reveal that short-term buyers dis-

proportionately contribute to the surge in aggregate inven-

tories. MSAs with larger speculative volume booms also

see substantially larger price busts, volume busts, and to-

tal foreclosures in the final phase of the cycle. We find that

speculative volume is larger when house price growth over

the past year is greater, which suggests that extrapolation–

the belief that prices continue to rise after recent gains–

draws speculators into the housing market. Consistent with

our interpretation of the data, a National Association of

Realtors survey reveals wide variation in expected hold-

ing times, shorter expected holding times among investors,

and increases in the short-term buyer share following re-

cent price gains. 

In the second part of the paper, we provide a quan-

titative model to match these novel facts about the

housing market. Our approach adapts core insights from

Cutler et al. (1990) , De Long et al. (1990) , and Hong and
206 
Stein (1999) to study the housing market. As in these pa- 

pers, extrapolation causes a predictable boom and bust 

in prices after a positive demand shock. In contrast, we 

relax the assumption of Walrasian market clearing, so 

that homes listed for sale may not sell immediately. To 

do so, we microfound extrapolation using the approach 

in Glaeser and Nathanson (2017) and then extend their 

framework to a non-Walrasian setting. 

In our model, a mover attempts to sell her house by 

posting a list price. A potential buyer arrives and decides 

whether to purchase the house at that price. Potential 

buyers differ in the benefits they derive from owning a 

house; non-occupants benefit less than occupants. Buyers 

also differ in the expected amount of time until becom- 

ing a mover; short-term buyers have shorter horizons ex 

ante. The average flow benefit of potential buyers fluctu- 

ates randomly over time. Agents cannot observe this de- 

mand process, but they observe the history of price growth 

and the share of listings that sell each period. Using these 

market data, agents infer the current level and growth rate 

of the demand process and optimally make decisions in 

light of these beliefs–the choice of list price for movers, 

and whether or not to purchase for potential buyers. As in 

Glaeser and Nathanson (2017) , agents mistakenly believe 

that potential buyers neglect time variation in the growth 

rate when deciding whether to buy. 

We study how our housing market responds to a large, 

unexpected increase to the growth rate of the demand 

process. The model matches key facts from our empirical 

work, including the lead–lag relation between prices and 

volume, the excess growth of short-term and non-occupant 

volume during the boom, and a growth in listings during 

the quiet coming disproportionately from short-holding- 

period sales. In the model, the quiet occurs when agents 

overestimate demand and believe it continues to grow, 

which causes movers to increase their list prices despite 

falling transaction volume. 

We then use this setting to evaluate the effect of spec- 

ulation on the housing cycle. When we shut down specu- 

lation by imposing rational expectations, almost all of the 

salient aspects of the housing cycle disappear or become 

quantitatively insignificant. We find similar patterns when 

we remove short-term and non-occupant buyers from the 

model. Therefore, speculators amplify the effects of non- 

rational expectations on prices and quantities over the 

housing cycle. Motivated by this result, we study transac- 

tion taxes on non-occupant buyers as well as on all buy- 

ers, as governments have used such taxes in attempts to 

curb speculation ( Chi et al., 2021 ). Taxing all buyers atten- 

uates the housing cycle, but even a large 5% tax on non- 

occupants has only a small effect on the price boom, price 

bust, and volume boom. 

Previous and contemporaneous empirical work exam- 

ines short-term buyers ( Adelino et al., 2016; Bayer et al., 

2021 ) and non-occupant buyers ( Haughwout et al., 2011; 

Bhutta, 2015; Chinco and Mayer, 2015 ) in the housing mar- 

ket, as well as the importance of speculation for volume or 

prices ( Gao et al., 2020; Bayer et al., 2020; Mian and Sufi, 

2022 ). Our paper is the first to focus on the joint dynam- 

ics of volumes, prices, and inventories, along with spec- 

ulative activity. We present stylized facts that any model 
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of this episode should be able to match. Our focus on

joint dynamics emphasizes the connection between spec-

ulation and the lead-lag relationship between prices and

volume, a pattern which receives less attention and has not

been linked to speculation in past work. Beyond this, our

data expands on past work through including more MSAs,

non-mortgage sales, new microdata on homes listed for

sale linked to prior transactions, and multiple measures of

speculation. 

Three strands of the literature theoretically explain the

comovement of prices and volume in housing and other

markets. In the first, investors disagree about asset val-

ues due to overconfidence ( Daniel et al., 1998; 2001;

Scheinkman and Xiong, 2003 ). The second exploits features

specific to the housing market, such as credit constraints

( Stein, 1995; Ortalo-Magné and Rady, 2006 ) or search and

matching frictions ( Wheaton, 1990; Díaz and Jerez, 2013;

Head et al., 2014; Hedlund, 2016; Ngai and Sheedy, 2020;

Anenberg and Bayer, 2020 ). The final strand incorporates

psychology into models with extrapolative expectations to

generate trade ( Barberis et al., 2018; Liao and Peng, 2018 ).

Some papers straddle multiple categories ( Guren, 2014; Pi-

azzesi and Schneider, 2009; Burnside et al., 2016 ). Relative

to these studies, our model’s contribution is to simultane-

ously generate three key patterns from our empirical work:

the existence of the quiet, the disproportionate growth in

short-term volume during the boom and quiet, and the ex-

cess growth in non-occupant purchases during the boom.

In addition, our model illustrates a mechanism for how

speculation amplifies the housing cycle, allows us to dis-

entangle the relative importance of short-term and non-

occupant buyers, and provides a framework to evaluate the

effects of transaction taxes on the housing market. 

1. Data 

In this section, we describe the data we use to estab-

lish the core motivating facts for our model and how we

identify speculative buyers in that data. Further informa-

tion regarding the data is in Online Appendix A. 

1.1. Data sources and sample selection 

Our main data come from CoreLogic, a private vendor

that collects and standardizes publicly available tax assess-

ments and deeds records from across the U.S., and include

observations from 115 MSAs. In analyses that require us

to identify an owner’s occupancy status, we use a subset

of 102 MSAs for which we can be sure that there were

no major changes in the way that mailing addresses were

coded during our sample period. In Online Appendix A, we

describe how we select these MSAs. Our analysis of the

housing cycle covers the time period 20 0 0 through 2011

because measuring realized holding periods requires ob-

serving consecutive transactions. 

We include all arms-length transactions of single-family

homes, condos, or duplexes that occur at a non-zero price.

We then drop a small number of duplicate transactions

where the same property is observed selling multiple

times at the same price on the same day or where multi-

ple transactions occur between the same buyer and seller
207 
at the same price on the same day. In Online Appendix A, 

we give the steps we follow to arrive at a final sample of 

51,580,408 transactions. Given the geographic coverage of 

these data and their source in administrative records, our 

sample serves as a proxy for the population of transactions 

in the U.S. during the sample period. 

Our listings data on individual homeowners is also pro- 

vided by CoreLogic and is sourced from a consortium of 

local MLS boards throughout the country. For each listing, 

we observe the date the home was originally offered for 

sale, an indicator for whether the listing ever sold, and the 

date of sale for those that did. We link these data to the 

deeds data using the assessor’s parcel number (APN) for 

the property. When analyzing listings, we focus our atten- 

tion on a subset of the 115 MSAs for which we can be rela- 

tively certain that the listings data are representative of the 

majority of owner-occupied home sales in the area. In On- 

line Appendix A, we describe the approach we use to se- 

lect these MSAs, leaving us with a final sample of 57 MSAs 

for our listings analysis. 

We supplement these transaction- and listing-level data 

with national and MSA-level housing stock counts from 

the U.S. Census, national counts of sales and listings of 

existing homes from the National Association of Realtors 

(NAR), and national and MSA-level nominal house-price in- 

dices from CoreLogic. We also use survey data to study 

heterogeneity in expected holding horizons in the cross- 

section and over time. Each March, as part of the Invest- 

ment and Vacation Home Buyers Survey, the NAR surveys 

a nationally representative sample of around 20 0 0 individ- 

uals who purchased a home in the previous year. The sur- 

vey asks respondents to report the type of home purchased 

(investment property, primary residence, or vacation prop- 

erty) as well as the “length of time [the] buyer plans to 

own [the] property.” Data on expected holding times and 

the share of purchases of each type are available between 

2008 and 2015. 

1.2. Identifying speculators 

We identify speculators in our transaction-level data 

using two complementary approaches, each of which has 

been used in prior work. In the first approach, we catego- 

rize transactions based on their realized holding periods. 

We denote transactions held for less than three years as 

“short-term” sales and track the evolution of these sales 

over time. This approach follows Bayer et al. (2020) , who 

classify speculators as those likely holding homes for short 

time periods for investment purposes. We similarly denote 

listings as short-term when the homeowner lists the house 

less than three years after buying it. 

In the second approach, we classify homebuyers based 

on their occupancy status. Those who purchase a home 

without the intent to occupy it immediately are more 

speculative in the sense that a larger portion of their 

overall expected return is derived from capital gains 

rather than from the consumption value of living in the 

home. To identify these buyers, we follow Chinco and 

Mayer (2015) and mark buyers as non-occupants when 

the transaction lists the buyer’s mailing address as dis- 

tinct from the property address. While this proxy may 
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Fig. 1. The dynamics of prices and volume. This figure displays the dynamic relation between prices and volume in the U.S. housing market between 20 0 0 

and 2011. Panel A shows monthly prices and sales volume at the aggregate level. Panels B–E show analogous series for a set of cities that represent regions 

with the largest boom–bust cycles during this time: Phoenix, AZ; Las Vegas, NV; Orlando, FL; and Bakersfield, CA. Monthly price index information comes 

from CoreLogic and monthly sales volume is based on aggregated transaction data from CoreLogic for 115 MSAs representing 48% of the U.S. housing stock. 

We apply a calendar-month seasonal adjustment for volume. Shaded regions denote the quiet, defined as the period between the peak of volume and the 

last peak of prices before their pronounced decline. 

 

 

 

 

 

 

 

 

 

 

misclassify some non-occupants as living in the home if

they choose to list the property’s address for property-tax-

collection purposes, we believe it to be a useful gauge of

the level of non-occupant purchases. 

One advantage of both methods is that they are

based on the full sample of housing transactions. Other

work has identified speculators based on the presence

of multiple first-lien mortgage records in credit report-

ing data or self-reported occupancy status on loan appli-

cations ( Haughwout et al., 2011; Gao et al., 2020; Mian

and Sufi, 2022 ). While based on similar ideas, such ap-
208 
proaches may omit a substantial fraction of speculative 

activity. 

2. Dynamics of prices, volume, and inventory 

In this section, we document the three phases of the 

housing cycle we mention above: boom, quiet, and bust. In 

Panel A of Fig. 1 , we plot aggregate trends in prices and 

volume between 20 0 0 and 2011. In Panels B–E, we plot 

analogous series for four cities that represent regions with 

the largest boom–bust cycles during this time: Phoenix, 
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Fig. 2. The lead–lag relation between prices and volume. This fig- 

ure shows that the correlation between prices and lagged volume is ro- 

bust across MSAs and maximized at a positive lag of 24 months. We 

regress the demeaned log of prices on seasonally adjusted lagged volume 

divided by the 20 0 0 housing stock following Eq. (1) for each lag from 

-12 months to 48 months and plot the implied correlation and its 95% 

confidence interval calculated using standard errors that are clustered by 

month. The implied correlation equals βk std (v i,t−k ) / std (p i,t ) , where v i,t−k 

and p i,t are the demeaned regressors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

new construction from the total volume statistics–because 

2 We repeat the analyses for Figs. 1–3 for MSAs outside the sand states. 

The results in Figures IA1, IA2, and IA3 of the online appendix reveal that 

the patterns we document are not exclusive to these states. 
3 Part of the increase in short-term volume during the boom happens 

mechanically because total volume is increasing. In Online Appendix B.1, 

we use conditional selling hazards by buyer cohort to quantify the con- 

tribution of an overall increase in total volume to the share of late-boom 

volume coming from short-term sales. Approximately 90% of the rise 

in short-term volume comes from the changing composition of buyers, 

rather than mechanical forces. 
AZ; Las Vegas, NV; Orlando, FL; and Bakersfield, CA. During

the housing cycle, volume peaks before prices, and there is

a sustained period during which volume is falling rapidly

on high prices. This dynamic holds consistently across re-

gions that experienced large price cycles. At the aggregate

level, volume rises to 150% of its level in 20 0 0 and then

falls back to this level before prices fall. In the four cities

in Panels B–E, volume more than doubles during the boom.

Prices subsequently peak between 200% and 300% of their

20 0 0 levels. 

Figure 2 shows that this lead–lag relation between

prices and volume also holds on average across all MSAs

in our sample from 20 0 0 to 2011. We estimate correlations

between prices and lagged volume by running regressions

of the form: 

p i,t = βk v i,t−k + ηi,t , (1)

where p is log price demeaned at the MSA level, v is vol-

ume normalized by the MSA’s 20 0 0 housing stock and de-

meaned at the MSA–calendar month level, i indexes MSAs,

and time is measured in months. Figure 2 plots the corre-

lations implied by each βk coefficient for up to four years

of lags ( k = 48 ) and one year of leads ( k = −12 ). The cor-

relation is positive at most leads and lags but reaches its

maximum at a positive lag of 24 months. Thus, changes

in volume generally lead changes in prices by about two

years. 

In Panel A of Fig. 3 , we plot aggregate trends in prices

and inventories of homes listed for sale between 20 0 0 and

2011. In Panels B–E, we plot analogous series for four cities

that represent the same regions as in Fig. 1 . Because Las

Vegas and Orlando are not in our listings data, we replace

them with the nearby MSAs of Reno and Daytona Beach.

During the period when the relation between volume and

prices reverses, aggregate inventories rise dramatically to

nearly double their level from earlier in the cycle. This pat-
209 
tern also characterizes the joint dynamic of prices and in- 

ventories across cities in Panels B–E. In Phoenix, Reno, and 

Bakersfield, inventories rise during the quiet to between 

double and triple their earlier levels. In Daytona Beach, in- 

ventories rise to 450% of their pre-quiet levels. 2 

These stylized facts suggest that focusing on the dy- 

namic of quantities–both volume and inventories–can pro- 

vide insight on the drivers of the cycle. In particular, de- 

termining who was most heavily participating in the hous- 

ing market during each phase may help us differentiate be- 

tween various explanations for that cycle. 

3. Speculators during the cycle 

This section explores the role of speculators throughout 

the housing cycle and their correlation with the aggregate 

dynamics of prices, volume, and inventory. 

3.1. Quantities and prices in the boom 

Figure 4 presents a simple illustration of the quantita- 

tive importance of speculation during the cycle. The fig- 

ure shows monthly aggregate time series for total transac- 

tion volume (with and without new construction), short- 

holding-period volume, and non-occupant volume calcu- 

lated using our deeds data. Each series is normalized rela- 

tive to its average value in 20 0 0 and seasonally adjusted by 

removing calendar-month fixed effects. For reference, we 

also report the raw counts of each type of transaction in 

20 0 0, 20 05, and 2010. To abstract from the effect of fore- 

closures on speculative volume during the bust, we drop 

lender acquisitions and dispositions of foreclosed proper- 

ties when constructing the series in this figure. 

While overall volume increased by 40% during the 

boom years of 20 0 0–20 05, speculative volume increased 

dramatically more. Both short-term sales and purchases 

by non-occupants approximately doubled between 20 0 0 

and 2005. Not only did these speculative components 

of volume increase more rapidly, but their increase also 

accounted for a non-trivial portion of the overall increase 

in volume. For example, total volume increased from 

2.73 million transactions in 20 0 0 to 3.82 million in 2005. 

During the same time period, short-holding-period volume 

increased from 510 to 940 thousand transactions, which 

implies that volume growth in this category alone can 

account for 39% of the total volume increase during the 

boom. 3 A similar calculation for non-occupant volume (in 

the 102 MSAs with reliable non-occupant data) implies 

that this measure of speculative activity can account for 

53% of the volume increase during the boom. If we exclude 
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Fig. 3. The dynamics of prices and inventories. This figure displays the dynamic relation between prices and inventory in the U.S. housing market between 

20 0 0 and 2011. Panel A shows monthly prices and the inventory of listings at the aggregate level. Panels B–E show analogous series for a set of cities that 

represent regions with the largest boom–bust cycles during this time: Phoenix, AZ; Reno, NV; Daytona Beach, FL; and Bakersfield, CA. Aggregate inventory 

information comes from the National Association of Realtors and is available starting in 20 0 0. Our MSA-level inventory data are available for these cities 

starting in 2001. Monthly price index information comes from CoreLogic and monthly inventory by MSA is based on aggregated data from CoreLogic for 57 

of the 115 MSAs in our main sample for which listings data are available. We apply a calendar-month seasonal adjustment for inventories. Shaded regions 

denote the quiet, defined as the period between the peak of volume and the last peak of prices before their pronounced decline. 

 

 

 

 

 

 

short-term sales can only involve homes previously sold–

short-term volume accounts for 57% of the aggregate

increase in existing home sales. These calculations illus-

trate that speculators were, in an accounting sense, a key

driver of the volume boom. 

The shift in the composition of volume toward specu-

lative buyers also correlates highly with changes in total

volume across local markets. This correlation can be seen
210 
in the top two panels of Fig. 5 . Panel A presents scatter 

plots of the percentage change in total volume at the MSA 

level from 20 0 0 to 20 05 versus the percentage change in 

volume for short holding periods and long holding periods 

separately. Not only does the growth in volume of short- 

holding-period transactions correlate strongly with the in- 

crease in total volume across MSAs, but the magnitude of 

this relation is also much stronger for short holding peri- 
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Fig. 4. Normalized aggregate volume by transaction type. This figure shows monthly aggregate time series for total transaction volume (navy triangles), 

total volume excluding new construction (blue circles), short-holding-period volume (red squares), and non-occupant volume (orange diamonds) between 

20 0 0 and 2011. All series exclude lender acquisitions and dispositions of foreclosed properties to remove the mechanical increase in short-term spells 

driven by forced sales during the bust. The non-occupant volume series only includes observations from the 102 MSAs for which we can consistently 

identify these transactions; the other series include observations for all 115 MSAs. Each series is separately normalized relative to its average value in the 

year 20 0 0 and seasonally adjusted by removing calendar-month fixed effects. The raw counts of each type of transaction in the years 20 0 0, 20 05, and 

2010 are reported in the upper right corner of the figure. In the table, S1 refers to the short-holding-period sample of 115 MSAs and S2 refers to the 

non-occupant sample of 102 MSAs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ods relative to long holding periods. 4 A similar conclusion

arises from Panel B, which presents analogous scatter plots

grouping transactions according to the occupancy status of

the buyer rather than the holding period of the seller. The

relation between total volume growth and non-occupant

volume growth across MSAs is strong, positive, and larger

in magnitude than the corresponding relation with growth

in sales to owner-occupants. 

Panels C and D further show that cross-MSA differences

in speculative volume growth explain much of the differ-

ences in total volume growth. For each MSA, we plot the

change in either short-holding-period volume (Panel C) or

non-occupant volume (Panel D) divided by initial total vol-

ume on the y-axis against the percentage change in total

volume on the x-axis. The slope provides an estimate of

how much of a given increase in total volume during this

period came in the form of short-holding-period or non-

occupant volume. For short-holding-period volume, the an-

swer is 30% (or 36% excluding new construction). For non-

occupant volume, the slope is even larger and implies that,

for the average MSA in our sample, 54% of the increase
4 One concern with our short-term speculation measure is that it is 

based on realized rather than expected holding periods. This way of 

measuring short-term speculation may complicate the interpretation of 

our results if buyers’ intended holding periods endogenously respond to 

changes in economic conditions during the boom. Online Appendix B.2 

presents instrumental variable regressions that predict short-term volume 

using pre-cycle demographics. The change in realized short-term volume 

is quantitatively important for overall volume growth and the size of 

the price cycle, even when using only the portion of short-term volume 

growth predicted by ex-ante buyer characteristics. 

211 
in total volume between 20 0 0 and 2005 came from non- 

occupant purchases. Thus, shifts in the composition of vol- 

ume toward speculative buyers are a major determinant of 

changes in total volume during the boom. 

Table 2 shows how speculative volume relates to the 

size of the price and quantity cycles in the cross-section of 

MSAs ( Table 1 shows summary statistics). 5 We estimate 

the correlation between growth in each speculative mea- 

sure and various housing market outcomes by separately 

regressing these outcomes on each measure of speculation. 

To aid interpretation, we scale the change in outcomes for 

all quantity measures relative to total volume in 2003. 

In Panel A, the first two columns show that house price 

booms are strongly related to the size of speculative vol- 

ume booms across cities. Cities with a one standard de- 

viation larger short-volume boom (12.9%) see a 24.9 per- 

centage point larger cumulative price increase during the 

boom. Cities with a one standard deviation larger non- 

occupant boom (27.1%) see a 15.4 percentage point larger 

cumulative price increase during the boom. On average 

across cities, prices rise by 97% during the boom and quiet. 
5 We focus our empirical analysis on MSA-level outcomes for two rea- 

sons. First, the variation across cities is likely more informative for the ag- 

gregate housing cycle. Second, and related to the first, spatial correlation 

across ZIP Codes within cities hinders interpretation of cross-sectional re- 

sults for some housing market outcomes. For example, MSA fixed effects 

account for 86% of the variation in house price booms across ZIP Codes. 

This fact is likely due to data limitations in house price index estimation, 

with local price indices often derived from spatial interpolation, and helps 

explain differences in results in cross-MSA analyses, as in our paper, and 

cross-ZIP Code, within-MSA analyses, as in Griffin et al. (2020) . 
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Fig. 5. Short-holding-period, non-occupant, and total volume growth across MSAs. This figure illustrates the quantitative importance of short-holding- 

period and non-occupant volume in accounting for the increase in total volume across MSAs between 20 0 0 and 20 05. The top two panels present MSA- 

level scatter plots of the percentage change in total volume from 20 0 0 to 20 05 versus the percentage change in volume for short and long holding periods 

(Panel A) and the percent change in volume for occupant and non-occupant buyers (Panel B). The bottom two panels show that the growth in short- 

holding-period and non-occupant volume were quantitatively important components of the growth in total volume across MSAs. For each MSA, we plot the 

change in short-holding-period volume (Panel C) and non-occupant volume (Panel D) divided by initial total volume on the y-axis against the percentage 

change in total volume on the x-axis. Because short-holding-period volume is based on the holding period of the seller and therefore cannot, by definition, 

include sales of newly constructed homes, Panel C also includes a version of the scatter plot that excludes new construction from total volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

cross-section of inventories. 

6 Table 2 reports the change in the inventory of unsold listings. In the 

online appendix, Table IA6 reports analogous results using the change in 

the flow of new listings and shows qualitatively similar results. The rise in 
Thus, the relation between speculative volume and prices

is economically large in the cross-section of MSAs. 

Consistent with the aggregate evidence in Fig. 3 , which

shows a modest increase in listings during the boom, we

find a small, statistically insignificant relation across MSAs

between speculative booms and the change in listings dur-

ing the boom (Panel B, columns 1–2). Given the strong

relation between the short-term and total volume booms,

this suggests that the increase in demand during the boom

was sufficient to absorb the rising flow of listings from

short-term buyers. 

3.2. Quantities and prices in the quiet and bust 

As discussed in Section 2 , there is a quiet period in

the housing cycle during which prices rise, transaction vol-

umes rapidly fall, and there is a large increase in unsold

listings. In Panel B of Table 2 , columns 3 and 4 show that
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the rise in listings during the quiet correlates strongly with 

the run-up of speculative volume during the boom across 

MSAs. Cities with a one standard deviation larger short- 

volume boom (12.9%) see a larger cumulative increase in 

listings during the quiet of 76.9 percentage points relative 

to the total volume in 2003. Cities with a one standard 

deviation larger non-occupant boom (27.1%) see a cumula- 

tive increase in listings during the quiet of 71.7 percentage 

points relative to the total volume in 2003. Across cities, 

the mean increase in inventories during the quiet is 178% 

of 2003 total volume with a standard deviation of 144%. 

Thus, the relation between speculative booms and the rise 

of listings is quantitatively important in accounting for the 
6 
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Table 1 

Speculators and housing market outcomes (summary statistics). This table reports summary statistics for MSA-level variables in different 

samples of MSAs. � Volume Quiet + Bust is defined as the change in total volume from 2005 through 2011. � Listings Boom is defined as 

the change in total listings from 2003 through 2005. � Listings Quiet is defined as the change in total listings from 2005 through 2007. 

Foreclosures Bust is defined as total foreclosures from 2007 through 2011. Price Boom is defined as the change in prices from 20 0 0 through 

2006. Price Bust is defined as the change in prices from 2006 through 2011. To aid interpretation of these relations, we scale the change 

in outcomes for all quantity measures relative to total volume in 2003 and multiply by 100. Total volume in 2003 has mean 28,061 and 

standard deviation 43,708 in the Short Volume Sample and mean 25,167 and standard deviation 35,967 in the Short Volume Sample with 

Listings. 

Variable Mean Standard Deviation Observations 

Panel A. Short-Volume Sample 

Short-Volume Boom 15.97 12.93 115 

Price Boom 97.06 47.88 115 

Price Bust -27.9 13.64 115 

� Volume Quiet + Bust -62.96 18.87 115 

Foreclosures Bust 82.84 55.96 115 

Panel B. Non-Occupant Volume Sample 

Non-Occupant Volume Boom 29.29 27.05 102 

Short-Volume Boom 16.88 13.36 102 

Price Boom 100.57 49.27 102 

Price Bust -28.99 13.97 102 

� Volume Quiet + Bust -63.32 19.47 102 

Foreclosures Bust 86.57 58.08 102 

Panel C. Short-Volume Sample with Listings 

Short-Volume Boom 14.64 12.33 57 

� Listings Boom 91.67 94.93 57 

� Listings Quiet 178.39 143.86 57 

Panel D. Non-Occupant Volume Sample with Listings 

Non-Occupant Volume Boom 27.81 27.32 48 

Short-Volume Boom 15.84 12.88 48 

� Listings Boom 82.11 93.67 48 

� Listings Quiet 171.74 151.29 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 6 , we supplement this cross-MSA evidence by

showing that short-term listings account for the major-

ity of the increase in new listings from 2003 to 2007.

We plot monthly series for total and short-term new list-

ings, normalizing each series relative to its 2003 average

and seasonally adjusting by removing calendar-month ef-

fects. These data only include a home listed for sale the

first time it appears during a listing spell to avoid double-

counting unsold listings. While total new listings rise to

150% of their 2003 average at the quiet’s peak, short-

term listings rise to 250% of their 2003 average and re-

main above 200% well into the bust. Short-term listings

rise from 280 to 590 thousand, accounting for 55% of the

rise in total new listings from 1.17 million to 1.73 million.

In later stages of the bust, short-holding-period listings fall

well below the 2003 level, consistent with the idea that

purchases in the quiet and early bust are more likely to in-

clude fundamental buyers and longer-term investors. 7 This
unsold listings during the quiet is driven both by an increase in the rate 

at which homes were listed for sale and a reduction in the probability of 

sale conditional on listing. In the online appendix, we repeat the analysis 

for Tables 2 and IA6, while including an indicator for whether the MSA 

is in a sand state. The results in Tables IA7 and IA8 are similar, though 

somewhat weaker for the non-occupant volume boom. 
7 This evidence complements Genesove and Mayer (1997, 2001) , who 

document the role of home equity and loss aversion, respectively, in pre- 

venting list prices from adjusting downward during a market downturn 

in Boston. Short-holding-period buyers are more likely to maintain high 
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evidence suggests that attempted sales by speculators who 

bought during the boom explain much of the increase in 

listings during the quiet, and that the reduced entry of 

speculators during the quiet contributes to the eventual 

decline in total volume. 

Larger speculative booms also predict stronger contrac- 

tions in total volume and prices during the end of the 

cycle. Panel C of Table 2 shows that cities with a one 

standard deviation larger short-volume boom and non- 

occupant boom respectively see cumulative declines in to- 

tal volume (relative to 2003 volume) that are 13.5 and 

13.9 percentage points larger. The analogous results for 

prices, shown in columns 3 and 4 of Panel A, imply 7.4 

and 4.5 percentage point larger declines during the bust. 

Thus, speculative booms explain much of the 63% aver- 

age decline in volume during the quiet and bust (rela- 

tive to 2003 volume) and 28% decline in prices during the 

bust. These cross-MSA results are consistent with the ag- 

gregate pattern in Fig. 4 , in which speculative volume de- 

clines more sharply during the quiet and bust than does 

total volume. Turning points in both short-holding-period 
list prices because–in the home equity view–they will have paid down 

less of their mortgages when they turn to sell and because–in the loss 

aversion view–they will have paid higher initial prices than long-holding- 

period buyers. In our model, extrapolation creates another force causing 

recent buyers to set overly optimistic list prices, the same force that helps 

explain their initial entry into the market. 
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Table 2 

Speculative booms and housing market outcomes. This table reports estimates of the relation between speculative volume and housing 

cycle measures at the MSA level. � Volume Quiet + Bust is defined as the change in total volume from 2005 through 2011. � Listings 

Boom is defined as the change in total listings from 2003 through 2005. � Listings Quiet is defined as the change in total listings from 

2005 through 2007. Foreclosures Bust is defined as total foreclosures from 2007 through 2011. Price Boom is defined as the change in 

prices from 20 0 0 through 2006. Price Bust is defined as the change in prices from 2006 through 2011. To aid interpretation of these 

relations, we scale the change in outcomes for all quantity measures relative to total volume in 2003 and multiply by 100. Table 1 presents 

summary statistics for each sample. Significance levels 10%, 5%, and 1% are denoted by ∗ , ∗∗ , and ∗∗∗ , respectively. Standard errors appear 

in parentheses. 

Panel A. MSA-Level Prices 

Price Boom Price Bust 

Short-Volume Boom 1.930 ∗∗∗ −0.571 ∗∗∗

(0.297) (0.083) 

Non-Occupant Volume Boom 0.570 ∗∗∗ −0.166 ∗∗∗

(0.173) (0.049) 

Number of Observations 115 102 115 102 

R -squared 0.272 0.098 0.293 0.103 

Panel B. MSA-Level Inventories 

� Listings Boom � Listings Quiet 

Short-Volume Boom −1.133 5.961 ∗∗∗

(1.027) (1.353) 

Non-Occupant Volume Boom −0.070 2.645 ∗∗∗

(0.505) (0.718) 

Number of Observations 57 48 57 48 

R -squared 0.022 0.000 0.261 0.228 

Panel C. MSA-Level Volume Quiet and Bust 

� Volume Quiet + Bust Foreclosures Bust 

Short-Volume Boom −1.047 ∗∗∗ 0.895 ∗∗

(0.096) (0.398) 

Non-Occupant Volume Boom −0.512 ∗∗∗ −0.060 

(0.051) (0.215) 

Number of Observations 115 102 115 102 

R -squared 0.515 0.505 0.043 0.001 

Fig. 6. The flow of listings for short-holding-period buyers. In this figure, we illustrate the time variation in propensities to list among recent buyers 

versus all buyers between 20 0 0 and 2011 in the U.S. We link listings micro data to transaction data at the property level to identify short-holding-period 

listings. We plot monthly aggregate time series for total listings (blue circles) and short-holding-period listings (red squares), defined as a listing where 

the previous sale occurred within the past three years. The series include observations for the 57 MSAs in our listings sample. Each series is separately 

normalized relative to its average value in the year 2003 and seasonally adjusted by removing calendar-month fixed effects. The raw counts of each type 

of listing in the years 20 03, 20 07, and 2010 are also reported in the upper right corner of the figure. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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8 In Online Appendix B.3, we estimate higher-frequency panel VAR 

specifications of speculative volume and lagged house price appreciation, 

in the style of Chinco and Mayer (2015) . The positive relation between 

prices and speculative purchases continues to hold. 
9 The data come from the replication files of Armona et al. (2019) . We 

thank Andreas Fuster for sharing this evidence with us. 
and non-occupant volume exactly coincide with the turn-

ing point in aggregate volume, the sharp rise in listings

during the quiet, and the decline in price growth before

its reversal. 

Finally, we find that cities with larger short-term spec-

ulative booms experienced more severe foreclosure crises.

The estimate in column 3 of Panel C implies that a one

standard deviation increase in the short-volume boom is

associated with 11.5 percentage points more foreclosures

(relative to 2003 volume) in the bust, equal to 370 thou-

sand more foreclosures. This effect is large relative to the

2.68 million foreclosures across the 115 MSAs in our data.

In contrast, the relation between foreclosures and the non-

occupant boom is insignificant (column 4 of Panel C). 

3.3. Summary of main empirical results 

Our results show strong relations between speculative

purchases during the boom and the amplitude of the hous-

ing cycle. Across cities, a larger speculative boom predicts

sharper increases in prices and volume during the boom, a

greater boom and bust in prices, a larger surge in listings

during the quiet, and a more pronounced fall in volume

during the quiet and bust. Time series evidence also indi-

cates that speculation accounts for much of the increase in

volume during the boom and listings during the quiet. 

These results suggest the following narrative linking

short-term speculators to the housing cycle. As prices in-

crease in the boom, short-term speculators buy houses

in anticipation of capital gains, and this buying activity

pushes up prices further. As price growth eventually slows,

speculative volume slows, contributing disproportionately

to the decrease in total volume. At the same time, specu-

lative buyers from the recent past–who are now looking to

sell–continue to generate a new flow of listings. Because

smaller expected capital gains attract fewer new specula-

tive buyers to the market, many of these new listings fail

to sell. Prices rise as volume falls, which suggests sellers

are still posting higher prices. The result is a quiet pe-

riod with falling volume, rising inventories, and slowing

price growth. Accumulating inventories and falling demand

eventually result in negative price growth, which creates a

lead–lag pattern between the drops in volume and prices.

The goal of our model is to illustrate this causal narrative

theoretically. 

4. Characterizing speculative buyers 

In this section, we use our microdata and other data to

provide additional insight on speculative purchases. These

facts motivate how we model speculation. 

4.1. Extrapolation among speculators 

Using multiple measures of speculation, we examine

whether house price growth can predict subsequent spec-

ulative purchases and beliefs in the housing market. Our

first measures use our deeds dataset. For each MSA and

year from 20 0 0 to 2011, we count total non-occupant pur-

chases and divide by the equivalent count from 1999 as a

normalization. We do the same for short-term purchases,
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defined here as those for which we observe another sale 

on the same property in the next three years. Panels A 

and B of Fig. 7 present binned scatter plots of normal- 

ized speculative purchases against house price growth in 

the past year. Both non-occupant and short-term purchases 

are much higher in the years and MSAs that witness higher 

house price appreciation in the last year. 8 

The second measure of speculation uses responses from 

the NAR’s Investment and Vacation Home Buyers Survey. 

For each year of the survey, we calculate the fraction of 

respondents (except those reporting “don’t know”) who re- 

port an expected holding time of less than three years or 

had already sold their home by the time of the survey. This 

measure captures the intention of buyers at the time of 

purchase. Thus, it complements our transaction-based met- 

ric that relies on realizations of short horizons after the 

fact. In Panel C of Fig. 7 , we plot this measure of specu- 

lation against annual house price growth at the national 

level. A gain of 10% in house prices over the past year is 

associated with an 8.2 percentage point larger short-term 

buyer share. 

Our final measures of speculation use responses from 

the 2014–2017 waves of the Federal Reserve Bank of New 

York’s Survey of Consumer Expectations. 9 This survey asks 

respondents’ views on housing as an investment as well 

as their probability of buying a non-primary home in the 

next three years. Thus, the survey directly queries non- 

occupant housing demand, complementing the measure of 

non-occupant purchases in our deeds data. Panels D and E 

of Fig. 7 present binned scatter plots of the survey mea- 

sures against appreciation in the Zillow house price index 

over the past five years in the respondent’s ZIP Code. The 

share of respondents saying that housing is a very good 

investment rises with local house price appreciation; the 

opposite is true for those calling housing a bad or very 

bad investment. The reported probability of buying a non- 

primary home also rises with lagged house price growth. 

In summary, house price growth predicts increased 

speculative purchases in three different datasets. These re- 

sults complement survey evidence showing that expected 

future house price growth rises with realized past house 

price growth ( Case et al., 2012; Armona et al., 2019 ). We 

incorporate extrapolative beliefs into our model in such 

a way that speculative purchases and posted list prices 

respond strongly to recent price growth. This modeling 

choice builds on prior studies that use extrapolative expec- 

tations to understand other aspects of the housing market 

( Glaeser et al., 2008; Guren, 2014; Glaeser and Nathanson, 

2017 ). 

4.2. Overlap between short-term and non-occupant buyers 

In this section, we examine overlap between short-term 

and non-occupant buyers. Data from the NAR’s Investor 
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Fig. 7. Speculative homebuying and recent house price appreciation. Panels A and B use CoreLogic data to show the relation between short holding period 

volume and non-occupant volume at the MSA level, respectively, and the past year’s house price appreciation. Volume measures are scaled relative to their 

level in 1999. Short-holding-period volume in Panel A is forward-looking, i.e., it is based on whether the buyer sells within three years. Panel C uses data 

from the NAR Investment and Vacation Home Buyers Survey; “annual house price growth” equals the average across that year’s four quarters of the log 

change in the all-transactions FHFA U.S. house price index from four quarters ago, and “short-term buyer share” equals the share of respondents other 

than those reporting “don’t know” who report an expected horizon of less than three years. We use the FHFA index here because it covers the 2015–2016 

period. Panels D and E use data from the Federal Reserve Survey of Consumer Expectations and Armona et al. (2019) to study the relation between recent 

house price growth and the probability of buying a non-primary home. In these data, local house price appreciation is computed at the ZIP Code-level 

from Zillow. 

 

 

 

 

 

 

 

 

 

 

 

and Vacation Home Buyers Survey report expected hold-

ing times separately for investor and non-investor buy-

ers. As Fig. 8 shows, about 20% of investor buyers re-

port expected holding periods of under three years, larger

than the corresponding share among non-investor buyers.

Therefore, these data provide direct evidence of overlap

between short-term and non-occupant buyers. 

To focus on speculators who entered during the 20 0 0–

2005 boom, we also measure this overlap in our CoreL-

ogic data. We find that 27% of 20 0 0–20 05 short-term vol-

ume came from non-occupant buyers, while 41% of the

increase in short-term volume over this time came from

non-occupants (see Online Appendix C.1 for details). There-
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fore, non-occupants account for an excess share of the 

growth in short-term buyers. 

The evidence in this section indicates that there is 

substantial overlap between short-term and non-occupant 

buyers. In light of this evidence, we allow for such overlap 

in our model. 

4.3. Credit utilization 

To examine the role credit plays in enabling specula- 

tive volume, we present in Table 3 summary statistics on 

the proportion of all-cash purchases in our data. Column 

1 shows that 29% of short-term buyers and 38% of non- 
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Table 3 

All-cash buyer shares. This table presents statistics on the share of buyers of various types who purchased their homes without the use 

of a mortgage (all-cash buyers). In column 1, the all-cash buyer share is measured at the transaction level and includes all transactions 

recorded between January 20 0 0 and December 2011 from the CoreLogic deeds records described in Section 1.1 . The first row includes 

only transactions by homebuyers who are observed to have sold the home within three years of purchase. The second row includes only 

non-occupant buyers. The third row includes all buyers. In columns 2–5, all-cash buyer shares are first calculated at the MSA-by-month 

level and then averaged across MSA-months within a given time period. The standard deviation of these MSA-month means is reported in 

parentheses for reference. Column 2 includes all MSA-months between January 20 0 0 and December 2011. Column 3 includes only MSA- 

months between January 20 0 0 and August 2005. Column 4 includes only MSA-months between August 2005 and December 2006. Column 

5 includes only MSA-months between December 2006 and December 2011. All statistics are calculated in the full sample of 115 MSAs with 

the exception of those for non-occupants, which are calculated in the sample of 102 MSAs with valid non-occupancy data. 

Transaction-Level MSA-Level 

All Months All Months Boom Quiet Bust 

Short Buyers 0.29 0.38 0.29 0.28 0.52 

(0.21) (0.16) (0.17) (0.20) 

Non-Occupant Buyers 0.38 0.41 0.36 0.32 0.50 

(0.18) (0.15) (0.14) (0.18) 

All Buyers 0.20 0.25 0.22 0.20 0.30 

(0.16) (0.15) (0.14) (0.16) 

Fig. 8. Expected holding times of homebuyers, 2008–2015. This fig- 

ure presents evidence on heterogeneity in expected holding times among 

recent homebuyers from the NAR Investment and Vacation Home Buyers 

Survey. We plot the response frequency averaged equally over each sur- 

vey year from 2008 to 2015. We reclassify buyers who have already sold 

their properties by the time of the survey as having an expected holding 

time in [0,1). 

 

 

 

 

 

 

 

 

 

 

 

 

occupant buyers do not use a mortgage. These shares ex-

ceed the all-cash share among all buyers, which is 20%.

The remaining columns of the table report averages at the

MSA-by-month level and show that all-cash transactions

among speculators remain high at all points of the hous-

ing cycle. Thus, while credit may have enabled specula-

tion, there is a disproportionately large group of specula-

tors who do not use credit at all. The behavior of these

buyers goes unobserved in any analysis of speculative ac-

tivity based on mortgage data alone. 10 

In Online Appendix C.2, we study the relation be-

tween leverage and short-term volume growth. We find

that short-term sales increase most strongly among sell-
10 The correlations between the speculative booms in Table 2 and their 

analogous counterparts that exclude cash transactions are approximately 

0.9. Thus, while excluding all-cash transactions would understate the im- 

portance of speculators in the aggregate, the cross-sectional relationships 

in Table 2 are robust to excluding these transactions. 
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ers whose LTV when purchasing the home was between 

60% and 85%. This evidence is consistent with prior work 

documenting credit growth among speculators during the 

boom ( Haughwout et al., 2011; Bhutta, 2015; Mian and 

Sufi, 2022 ). However, it also suggests that very high credit 

utilization (LTV ≥ 85%) does not account for most of the 

rise in speculative buying. 

Motivated by these findings, we omit credit constraints 

from our model of housing market speculation. We stress 

that, although we omit credit from the model, our findings 

are compatible with stories in which credit enables specu- 

lative entry during the cycle. 

4.4. Buyer scale and experience 

Next, we examine whether short-term buyers are indi- 

viduals buying a few houses or firms buying many houses. 

In Online Appendix C.3, we present a methodology for 

classifying buyers as real estate developers, experienced 

investors holding three or more homes, or inexperienced 

buyers owning one or two homes. Of the short-term sales 

in 20 0 0–20 05, 15% of the initial purchases are from de- 

velopers, 24% are from experienced investors, and 61% 

are from inexperienced buyers. This evidence is consistent 

with Bayer et al. (2020, 2021) who also find an impor- 

tant role for inexperienced short-term investors during this 

episode. In light of the large share of inexperienced buy- 

ers among short-term sellers, we allow buyers to own only 

one house in our model. 

Finally, we explore whether short-term sellers remain 

within the MSA by buying another house nearby. We 

link transactions within MSA in our data by comparing 

names of buyers and sellers. As we describe in Online Ap- 

pendix C.3, 69% of short-term sellers do not buy in the 

MSA within a quarter of the sale. To match the high share 

of such sellers, we assume in our model that homeowners 

exit the local housing market upon selling their house. 

5. The model 

The goal of our model is to match the joint dynam- 

ics of prices, volume, and listings. Additionally, the model 
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Fig. 9. Model flowchart. This figure illustrates how agents in the model 

transition between different types. At each time period, t , all movers list 

their homes for sale and are matched to potential buyers. Potential buy- 

ers decide whether to purchase at the mover’s listed price P. If a potential 

buyer purchases, she becomes a stayer and receives a constant per-period 

housing utility e δ during each period that she remains a stayer. If she does 

not purchase, she exits the market and consumes her terminal wealth. A 

stayer transitions into being mover with probability λ each period. The 

log of the housing utility, δ, that potential buyers who purchase will re- 

ceive as stayers is the sum of a time-varying aggregate demand shifter, 

d t , which is common to all potential buyers matched at time t , and an 

idiosyncratic term, a , which varies across potential buyers within a given 

cohort. The idiosyncratic term a is distributed N (μn , σa ) and depends 

on the potential buyer’s type, n , which can be either occupant ( n = 1 ) 

or non-occupant ( n = 0 ). The mover hazard λ also differs across poten- 

tial buyers and follows a discrete distribution given by Pr (λ = λ j ) = βn, j , 

for j ∈ { 1 , . . . , J} . Potential buyers are aware of both δ and λ at the time 

they decide to purchase. Movers receive zero housing flow utility during 

the time when they are attempting to sell. Those who do not sell remain 

movers in the next period and those who do sell exit the market and con- 

sume their terminal wealth. We denote the probability of a sale by πt . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 In other models, some movers fail to match to a potential buyer due 
should explain the disproportionate role of non-occupants

and short-term sales in generating these dynamics. 11 In

doing so, the model complements our empirical analysis

by permitting stronger causal statements about the role of

speculation and allowing us to conduct counterfactual ex-

plorations of model assumptions and policy design. 

5.1. Environment and preferences 

We present a discrete-time model of a city with a

fixed amount of perfectly durable housing, normalized to

have measure 1. There are three types of agents in the

model: movers, stayers, and potential buyers. Movers are

city homeowners who are trying to sell their homes. Stay-

ers are city homeowners who do not list their homes for

sale. Potential buyers are people from outside the city who

get a one-time chance to buy a house from a mover. In

Fig. 9 , we illustrate how agents transition between these

three types. 

All agents are risk-neutral and can borrow or lend

across periods at an interest rate of r. They maximize their

expectation of the discounted present value of their per-

period utility, which is the sum of two components: hous-
11 In Online Appendix D, we discuss the relation between our model and 

prior work in detail. 
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ing utility and non-housing consumption, whose price we 

normalize to 1. 

Each period, a mover lists her house for sale by post- 

ing a list price, P . She then matches randomly to a poten- 

tial buyer from outside the city, who decides whether to 

purchase at the listed price. 12 In the event of a sale, the 

mover exits the market and consumes her terminal wealth. 

Movers who fail to sell remain movers next period. We de- 

note the share of listings that sell at time t by πt . Movers 

receive 0 housing utility while listing their homes. They 

are impatient and discount time at rate r m 

≥ r. 

Potential buyers who decide to buy become stayers 

at the beginning of the next period. Those who do not 

buy exit the market and consume their terminal wealth. 

Stayers receive housing utility e δ at the beginning of each 

period, but cannot sell their house. With probability λ
each period, a stayer transitions to being a mover, at 

which point she lists her home for sale. Housing utility e δ

and the mover hazard λ remain constant for a given stayer 

over time but may vary across stayers. All stayers discount 

time at rate r. 13 

At time t , each potential buyer knows the housing util- 

ity she would receive while being a stayer if she chooses 

to purchase and the probability λ that she would transi- 

tion into becoming a mover each period. For each potential 

buyer within a given cohort, the log of her housing utility, 

δ, is the sum of a time-varying aggregate demand shifter, 

d t , and an idiosyncratic term, a , that varies across potential 

buyers at a point in time: 

δ = d t + a. (2) 

Potential buyers observe their own value of δ but do not 

separately observe d t and a . That is, they cannot determine 

what fraction of their personal valuation is common to all 

potential buyers in their cohort. 

The demand shifter d t affects the distribution of hous- 

ing utility across different cohorts of potential buyers over 

time. We model it as a difference-stationary process with 

a persistent growth rate: 

d t = d t−1 + g t + εd 
t 

g t = (1 − ρ) μg + ρg t−1 + εg 
t , 

where 0 ≤ ρ < 1 , and εd 
t and εg 

t are mean-zero inde- 

pendent normals. We denote σ 2 
d 

= Var (�d t ) and γ = 

Var (g t ) / Var (�d t ) , which implies that the variances of εd 
t 

and εg 
t are (1 − γ ) σ 2 

d 
and γ (1 − ρ2 ) σ 2 

d 
, respectively. As 

with d t , the growth rate g t is unobservable to all agents 

in the model. 

The idiosyncratic term a generates within-cohort het- 

erogeneity in housing utility. We assume that there are 

two types of potential buyers, indexed by n : non-occupants 

( n = 0 ) and occupants ( n = 1 ). To capture the idea that 

non-occupants generally receive smaller flow benefits from 

their homes than occupants, we allow the distribution of a 
to search frictions ( Head et al., 2014; Guren, 2018 ). We abstract from this 

possibility. 
13 We assume that r is large enough to rule out rational bubbles and 

provide the precise condition for this in Online Appendix E.1. 
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to vary across these two groups. Specifically, the distribu-

tion of a across potential buyers of type n at each time t

is N (μn , σ 2 
a ) . Each potential buyer knows whether she is

a non-occupant or an occupant. 

Finally, to capture heterogeneity in expected holding

periods, we allow λ to vary across potential buyers within

each cohort. We assume that λ follows a discrete distribu-

tion with possible values λ ∈ { λ1 , . . . , λJ } and denote the

joint probability that a potential buyer is of occupancy-

type n and has mover hazard λ j to be βn, j . Thus, the dis-

tribution of expected investment horizons can also differ

across non-occupants and occupants. 

5.2. Inference about demand 

To forecast the price at which they will eventually sell

their house, agents must estimate the current level of the

demand shifter, d t , and its growth rate, g t . Agents use his-

torical data on city house prices to estimate these latent

variables. We focus on equilibria in which all movers at a

given time post the same list price, which we denote P t 
(conditions for this outcome are below). Agents at time t

observe the full history of price changes, P t ′ /P t ′ −1 for t ′ < t .

They deduce any past price level, P t ′ , by inflating the list

price they observed as a potential buyer by cumulative

price growth between the time of their purchase and t ′ .
Agents also observe the history of the shares of listings

that sell, πt ′ for t ′ < t . 

To infer d t and g t from historical market data correctly,

an agent needs to know how past potential buyers used

market data to decide whether to buy a house. Following

Glaeser and Nathanson (2017) , we depart from rationality

and propose that agents instead adopt a simplified model

of how other agents decide to buy a house. Specifically,

agents believe that other agents decide to buy a house if

and only if: 

e δ ≥ κP, (3)

where P is the list price of the house and κ is a time-

invariant constant that is common across all potential buy-

ers. As we discuss in Section 6.3 , this is the key behavioral

assumption that generates positive feedback and bubble-

like dynamics within our theoretical framework. In em-

ploying this mental model, agents neglect the fact that the

beliefs, and therefore the decision rule, of potential buy-

ers could vary over time based on the changing history of

market data. 14 However, conditional on the beliefs implied

by this simplified model, agents make decisions optimally. 

Given Eq. (2) and the decision rule in (3) , agents believe

that other agents buy if and only if: 

a ≥ log P + log κ − d t . 

Therefore, according to agents’ simplified model, the share

of potential buyers at time t who would purchase at list

price P is: 

1 − F ( log P + log κ − d t ) ≡ ˜ π(P, d t ) , (4)
14 This simplified model of other agents’ willingness to pay is the same 

as the “cap rate error” that Glaeser and Nathanson (2017) introduce. That 

paper motivates this error by showing that common knowledge of ratio- 

nality is not robust to small mistakes and involves unintuitive decision 

rules as a function of past prices. 
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where F (a ) = 

∑ 1 
n =0 

∑ J 
j=1 

βn, j 
(a − μn ) is the CDF of a 

across both non-occupants and occupants, and 
(·) is the 

CDF of a normal random variable with mean 0 and vari- 

ance σ 2 
a . 

Given market data on historical prices P t ′ and sales 

shares πt ′ , agents at time t use Eq. (4) to infer past val- 

ues of the demand shifter. In particular, by equating πt ′ to 

˜ π(P t ′ , d t ′ ) , they infer that: 

˜ d t ′ = log P t ′ − F −1 (1 − πt ′ ) + log κ, (5) 

where ˜ d t ′ denotes an agent’s belief about the true value of 

the demand shifter d t ′ . Given this inferred history of the 

demand shifter, agents employ a standard Kalman filter to 

arrive at posterior estimates of its current value, d t , and its 

growth rate, g t . Lemma 1 characterizes these posteriors (all 

proofs are in Online Appendix E). 

Lemma 1 . Conditional on house prices and sale probabilities 

before t, the posterior distributions of d t and g t are N ( ̂  d t , ˆ σ 2 
d 
) 

and N ( ̂  g t , ˆ σ 2 
g ) , where: 

ˆ d t = 

˜ d t−1 + 

ˆ g t 

ˆ g t = μg + (1 − α) ρ
∞ ∑ 

k =1 

(αρ) k −1 
(
� ˜ d t−k − μg 

)
, 

and ˆ σd , ˆ σg , and α ∈ (0 , 1) are constants depending on σd , γ , 

and ρ . 

Together with Eq. (5) , Lemma 1 shows that agents es- 

timate the current level of the demand shifter, d t , and its 

growth rate, g t , from historical market data in a straight- 

forward manner. In particular, differencing Eq. (5) yields: 

� ˜ d t−k = � log P t−k − �F −1 (1 − πt−k ) , 

which implies that the expected growth rate, ˆ g t , is a 

weighted average of past price growth adjusted downward 

each period to reflect any increase in the share of unsold 

listings. The expected demand shifter, ˆ d t , equals this ex- 

pected growth rate plus agents’ belief about last period’s 

demand shifter. 

5.3. Mover problem 

The mover’s problem is to select a list price that maxi- 

mizes the expected present value of utility conditional on 

beliefs about the demand shifter and its growth rate. We 

write the problem recursively as: 

 

m ( ̂  d t , ̂  g t ) = sup 

P 

E 
(

˜ π(P, d t ) P + (1 + r m 

) −1 (1 − ˜ π(P, d t )) 

V 

m ( ̂  d t+1 , ̂  g t+1 ) 
)
, (6) 

where the expectation is over d t ∼ N ( ̂  d t , ˆ σ 2 
d 
) . If the poten- 

tial buyer who matches to the mover buys, the mover re- 

ceives P and exits the city. The first term, ˜ π(P, d t ) P , gives 

the mover’s perceived probability of this event times the 

payoff. The second term gives the discounted value of con- 

tinuing as a mover next period times the probability of 

that event. 

All movers at time t post the same list price when a 

unique P maximizes the right side of Eq. (6) . We verify the 
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tion about the current demand shifter, d t , due to Eq. (2) . Therefore, her 

posterior on d t combines the posterior based on housing data, N ( ̂  d t , ̂  σ 2 
d 
) , 
existence of such a price at each point of the state space in

our quantitative exercise. Lemma 2 clarifies how this price

depends on mover beliefs, ˆ d t and ˆ g t . 

Lemma 2 . The optimal list price takes the form P t = e 
ˆ d t p( ̂  g t )

for some function p(·) . 
The log list price scales one-for-one with the current

belief about the level of the demand shifter, ˆ d t . It also de-

pends on the belief about the growth rate, ˆ g t , because the

option of selling next period becomes more valuable when

movers expect faster demand growth. 

Because ˆ d t and ˆ g t depend on historical market data, we

can also characterize price posting as a function of past

prices and sales shares. To provide intuition about price

posting, Lemma 3 shows that when r m 

is large, movers set

prices in a simple extrapolative fashion. 

Lemma 3 . In the limit as r m 

→ ∞ , agents’ expectation of

house price growth over the next period conditional on house

prices and sale probabilities before t is: 

E� log P t+1 = μg + (1 − α) ρ
∞ ∑ 

k =1 

(
ρ

1 + (1 − α) ρ

)k 

× ( � log P t−k − μg ) . 

Given this expectation, movers at time t + 1 set prices accord-

ing to the rule: 

� log P t+1 = E� log P t+1 + (1 + (1 − α) ρ) ( log ( κ p ) 

−F −1 (1 − πt ) 
)
, 

for some constant p . 

In this limit, price growth expectations are a simple

weighted average of past price changes, as in the reduced

form extrapolation formulas that Barberis et al. (2015,

2018) and Liao and Peng (2018) assume. Similarly, price

setting closely resembles the “backward-looking rule of

thumb” that Guren (2018) assumes, except that movers

here decrease list prices when they observe a high share of

unsold listings in the prior period. Therefore, the bounded

rationality of movers in our model endogenously leads to

extrapolative expectations and price posting when movers

are impatient. 

5.4. Potential buyer problem 

The potential buyer’s problem is to decide whether to

purchase or not, taking as given the price that movers post.

At the end of time t , the expected utility for a potential

buyer from purchasing a house is: 

 

b ( ̂  d t , ̂  g t ;λ, δ, n ) = (1 + r) −1 E 

(
e δ + λV 

m ( ̂  d t+1 , ̂  g t+1 ) 

+(1 − λ) V 

s ( ̂  d t+1 , ̂  g t+1 ;λ, δ) 
)
, (7)

where the expectation is over d t ∼
N 

(
σ 2 

a 
ˆ d t + ̂ σ 2 

d 
(δ−μn ) 

σ 2 
a + ̂ σ 2 

d 

, 
σ 2 

a ˆ σ 2 
d 

σ 2 
a + ̂ σ 2 

d 

)
. 15 A potential buyer who
15 The posterior on d t is different for potential buyers than for movers 

and stayers. A potential buyer’s log housing utility, δ, conveys informa- 
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purchases becomes a stayer and receives housing utility 

e δ at the beginning of the next period. With probability 

λ, she then becomes a mover, the value of which is equal 

to V m ( ̂  d t+1 , ̂  g t+1 ) and given by Eq. (6) . With probability 

1 − λ, she continues on as a stayer, the value of which 

we denote by V s ( ̂  d t+1 , ̂  g t+1 ;λ, δ) . At any time t , the stayer 

value function can be written recursively as: 

 

s ( ̂  d t , ̂  g t ;λ, δ) = (1 + r) −1 E 

(
e δ + λV 

m ( ̂  d t+1 , ̂  g t+1 ) 

+(1 − λ) V 

s ( ̂  d t+1 , ̂  g t+1 ;λ, δ) 
)
, (8) 

where the expectation is over d t ∼ N ( ̂  d t , ˆ σ 2 
d 
) . 

A potential buyer decides to buy when the value of do- 

ing so is at least as large as the price: V b ( ̂  d t , ̂  g t ;λ, δ, n ) ≥ P . 

Lemma 4 recasts this decision rule in terms of the mini- 

mum housing utility at which a potential buyer decides to 

buy. 

Lemma 4 . A potential buyer at time t with housing utility e δ

and occupancy type n and for whom λ = λ j decides to pur- 

chase a home with list price P if and only if: 

e δ ≥ κn, j ( ̂  g t ) P, 

for some function κn, j (·) . 

The potential buyer’s decision rule is similar to the one 

in Eq. (3) that other agents believe she is using. She pur- 

chases if the per-period housing utility she would receive 

exceeds some fraction of the list price. The key distinction 

is that the fraction she actually uses depends on both the 

history of market data she observes and her type. In partic- 

ular, because the potential buyer anticipates selling in the 

future, this fraction depends on ˆ g t , the expected growth 

rate of the demand shifter, and on λ, which determines the 

amount of time she expects until becoming a mover. 

The cutoff rule in Lemma 4 determines both the share 

of listings that sell and the fraction of all purchases made 

by buyers of each of the 2 J types. Specifically, a purchase 

occurs when: 

a ≥ log P + log κn, j ( ̂  g t ) − d t , 

which implies that the share of potential buyers of type 

n and λ j who buy at time t is 1 − 
( log P + log κn, j ( ̂  g t ) −
d t − μn ) . Substituting the expression for list prices from 

Lemma 2 and averaging these shares over all potential 

buyer types gives the share of all listings that sell: 

πt = 1 −
1 ∑ 

n =0 

J ∑ 

j=1 

βn, j 

(

log p( ̂  g t ) + log κn, j ( ̂  g t ) 

+ ̂

 d t − d t − μn 

)
. (9) 
with her prior based on her housing utility, N (δ − μn , σ 2 
a ) . Movers and 

stayers, however, do not use their own δ to estimate d t because it is a 

noisy observation of a past value of the shifter, d t ′ , which they believe 

they infer directly as ˜ d t ′ . 
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The share of sales at time t going to buyers of type n and

λ j , which we denote b n, j,t , equals: 

b n, j,t = π−1 
t βn, j 

(
1 − 


(
log p( ̂  g t ) + log κn, j ( ̂  g t ) 

+ ̂

 d t − d t − μn 

))
. (10)

The share of listings that sell, πt , and the share of sales go-

ing to each of the 2 J types, b n, j,t , determine the dynamics

of all the aggregate quantity variables in the model. 

5.5. Quantities 

The model has three aggregate quantities of interest:

transaction volume, Q t , inventory available for sale, I t , and

new listings, L t . The following accounting identities char-

acterize the evolution of these aggregates as a function

of sales probabilities, πt , and the composition of buyers,

b n, j,t : 

Q t = πt I t , 

I t = (1 − πt−1 ) I t−1 + L t , 

L t = 

J ∑ 

j=1 

λ j S j,t−1 , 

where S j,t measures the share of housing owned by stay-

ers of type λ = λ j at the end of time t . This share evolves

according to the following law of motion: 

S j,t = (1 − λ j ) S j,t−1 + (b 0 , j,t + b 1 , j,t ) Q t . 

As these equations make clear, the current composition of

buyers affects the composition of stayers, thereby altering

future listings and volume. Volume rises when there are

more listings or when the selling probability is higher. 

In addition to these aggregates, the model generates dy-

namic patterns in quantities that vary across both realized

holding periods and buyer occupancy types. For instance,

one variable we track in the data is new listings of homes

purchased within the last three years. In the model, new

listings at time t of homes purchased within the last K pe-

riods equals: 

L K t = 

K ∑ 

k =1 

J ∑ 

j=1 

λ j (1 − λ j ) 
k −1 (b 0 , j,t−k + b 1 , j,t−k ) Q t−k . 

Similarly, our empirical analysis decomposes volume ac-

cording to the occupancy type of the buyer and the real-

ized holding period of the seller. In the model, the decom-

position by occupancy is straightforward: volume to buyers

of occupancy type n equals 
∑ J 

j=1 
b n, j,t Q t . Decomposing vol-

ume by realized holding period is more complicated. The

sales volume at time t of houses purchased within the last

K periods equals 
∑ K 

k =1 πt I 
k 
t , where I k t denotes the inventory

of listings at time t of homes purchased at time t − k . This

quantity satisfies the recursion: 

I k t = (1 −πt−1 ) I 
k −1 
t−1 + 

J ∑ 

j=1 

λ j (1 −λ j ) 
k −1 (b 0 , j,t−k + b 1 , j,t−k ) Q t−k 

for k > 0 , with initial condition I 0 = 0 . 
t 

221 
6. Model results 

6.1. Simulation and calibration methodology 

We perform a series of simulations to analyze the base- 

line properties of our model and to study impulse re- 

sponses to a shock. Each simulation corresponds to 148 se- 

quential realizations of the two stochastic shocks, εd 
t and 

εg 
t . The first 100 periods burn in the simulation, leaving 48 

analysis periods. Each period represents a quarter, so our 

analysis spans 12 years. We draw a control sample of 1,0 0 0 

independent simulations to analyze the model’s baseline 

properties. To analyze the impulse response to a shock, we 

draw a treatment sample of 1,0 0 0 additional simulations 

identical to the control except in periods 101–104 during 

which the growth rate shocks εg 
t are two standard devi- 

ations higher, representing a large but plausible increase 

in demand. Impulse responses are average differences be- 

tween treatment and control outcomes. 

Solving the model at any point in time requires eval- 

uating both the function that movers use to set prices, 

p( ̂  g t ) , and the function that potential buyers use to decide 

whether to purchase, κn, j ( ̂  g t ) . To do so, we discretize ˆ g t 
using the Rouwenhorst (1995) method and then calculate 

the function values at these discrete points. To evaluate the 

functions outside these points, we use cubic splines be- 

tween mesh points and linear splines beyond the bound- 

aries. 

We set r = 0 . 012 and ρ = 0 . 880 , corresponding to an- 

nual values of 5% and 0.51 in Guren (2018) and Glaeser and 

Nathanson (2017) , respectively. We normalize μ0 = 0 , so 

that μ1 gives the average log difference in housing util- 

ity between occupants and non-occupants. We set μg = 

−σ 2 
d 
/ 2 , which implies that the unconditional expected 

growth rate of e d t is 0, so that the average growth rate 

of housing utility across cohorts of potential buyers is the 

same as that for stayers already living in the city. We 

choose κ so that the average value of d t − ˆ d t in the con- 

trol simulations equals 0. This choice ensures that agents’ 

simplified model in Eq. (3) leads to inferences about the 

level of the demand shifter that are correct on average. 

We select values of the remaining parameters so that 

moments from our simulation match the empirical coun- 

terparts in Table 4 . The composition of buyers and the 

volatility of demand growth determine βn, j and σd , respec- 

tively, and the selling hazard disciplines r m 

, as more pa- 

tient movers take longer to sell by setting higher prices. 

We target three features of the national U.S. housing cy- 

cle: the ratio of price boom to bust, the volume boom rel- 

ative to the price boom, and the degree to which the non- 

occupant volume boom exceeds the occupant boom. Intu- 

itively, these moments determine γ , σa , and μ1 through 

quantifying extrapolation, the elasticity of demand, and the 

excess sensitivity of non-occupants. 

6.2. Parameter estimates 

Table 5 reports parameter values that match the mo- 

ments in Panels B and C of Table 4 . Non-occupant hous- 

ing utility is 0.9% less than occupant housing utility on 

average, corresponding to less than a standard deviation 



A .A . DeFusco, C.G. Nathanson and E. Zwick Journal of Financial Economics 146 (2022) 205–229 

Table 4 

Inputs into model calibration. This table reports parameters that we assume in the calibration, as well as targets we use to determine 

the remaining parameters. In the model, we target the mean buyer shares, quarterly selling hazard, and demand error across all analysis 

periods in control simulations. We theoretically derive the annual volatility of demand growth as well as the mean demand growth as 

functions of parameters. Price overshoot is the ratio of log price growth from the beginning to peak to log price growth from the beginning 

to the trough after the peak. Volume boom/price boom is the ratio of log existing volume growth from the beginning to the peak of volume 

(20 0 0 to 2005, using numbers from Fig. 4 ) to aforementioned log price growth. Non-occupant boom/occupant boom is the ratio of each 

category of log volume growth from 20 0 0 to 2005 in the sample of MSAs we use for non-occupant analysis. In the model, we use quarterly 

minimums and maximums instead of aggregating at the year level. We match all targets to within rounding. GN (2017) denotes Glaeser and 

Nathanson (2017) . 

Parameter or target Value Source 

Panel A: Assumed parameters 

r (non-mover discount rate) 0.012 Guren (2018) 

Potential λ values { 0 . 50 , 0 . 17 , 0 . 05 , 0 . 03 , 0 . 01 } Fig. 8 

ρ (demand growth persistence) 0.880 GN (2017) 

Panel B: Steady-state targets 

Occupant buyer shares (0.06,0.07,0.16,0.16,0.34) Fig. 8 

Non-occupant buyer shares (0.04,0.03,0.04,0.04,0.06) Fig. 8 

Annual volatility of demand growth 0.023 GN (2017) 

Quarterly selling hazard 0.75 Guren (2018) 

Mean demand error 0 Model 

Mean demand growth 0 Model 

Panel C: Cycle targets 

Price overshoot 2.3 Fig. 1 

Volume boom/price boom 0.4 Fig. 1 

Non-occupant boom/occupant boom 3.1 Fig. 4 

Table 5 

Outputs from model calibration. See text for definitions of parameters in Panel A. We find these values by searching for parameters such 

that moments from the model match targets in Table 4 . Panel B reports regression coefficients of annualized price growth in the next year 

and between 2 and 5 years from now on last year’s price growth. We run these regressions across control simulations at the beginning of 

the analysis period. 

Parameter or outcome Interpretation Value 

Panel A: Derived parameters 

σa Flow utility dispersion 0.066 

μ1 Occupant premium 0.009 

γ g variance share 0.070 

κ Assumed buying cutoff 0.029 

σd Demand volatility 0.011 

μg Mean demand growth −0 . 0 0 0 

r m Mover discount rate 0.141 

β0 , j Non-occupant shares (0.143,0.022,0.030,0.030,0.045) 

β1 , j Occupant shares (0.185,0.052,0.119,0.119,0.254) 

Panel B: Steady-state outcomes 

1-year extrapolation – 0.127 

2–5-year extrapolation – 0.042 

 

 

 

 

 

 

 

 

 

 

 

in each group’s distribution. The mover discount rate is

14%. To map this number into a flow cost of moving,

we calculate how much higher the mover value function

would be if the mover discount rate were equal to r for

a single period. The average difference is 3.7% of the list

price, in line with the typical costs of selling a house

( Han and Strange, 2015 ) and smaller than the estimate in

Guren (2018) of 2.1% per month. 

Relative to occupant potential buyers, a much larger

fraction of non-occupant potential buyers have short hori-

zons. According to the estimates for βn, j , over half of non-

occupant potential buyers expect to become movers six
222 
months after buying a house; the equivalent share of oc- 

cupant potential buyers is 25%. These estimates come from 

targeting the data in Fig. 8 , which show that a relatively 

large share of buyers of investment properties intend to 

own for less than one year. They imply significant over- 

lap between non-occupant and short-term potential buyers 

within the model. 

Lemma 3 shows that when r m 

→ ∞ , price growth ex- 

pectations are a weighted average of past price changes. 

Here, r m 

is finite, but nonetheless large enough to gen- 

erate extrapolation. To measure extrapolation, we follow 

Armona et al. (2019) by focusing on the relation between 
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Fig. 10. Buying cutoffs for different expected growth rates. The buying 

cutoff, κn, j ( ̂ g t ) , determines how large a potential buyer’s housing utility 

must be relative to the price of a house for her to decide to buy. It de- 

pends on the potential buyer’s occupancy type, n , her quarterly moving 

hazard, λ j , and the current expected quarterly growth rate of the demand 

shifter, ˆ g t . We plot values of these functions for the λ values in our cali- 

bration, which appear in the legend. Solid lines correspond to occupants 

( n = 1 ); dashed lines correspond to non-occupants ( n = 0 ). The horizontal 

grey dashed line gives κ , which agents mistakenly believe is the time- 

invariant buying cutoff for other potential buyers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 The cutoffs depend on occupancy type only because a potential 

buyer’s housing utility, δ, conveys information about the contemporane- 

ous demand shifter, d t . Quantitatively, this channel is irrelevant because 

σa = 0 . 066 is much larger than ˆ σd = 0 . 011 . 
17 The price boom in our model is smaller than the national boom 

shown in Fig. 1 . Potentially, the shocks that generated the national boom 

are stronger than the one year of two standard deviation shocks we feed 

into our model. Another possibility is that our assumed value of 0.023 for 

the annual volatility of demand growth (see Table 4 ) is too low. Finally, 

new construction and credit, which our model omits, may have amplified 

the national boom ( Favilukis et al., 2017; Nathanson and Zwick, 2018 ). 

To ease comparison with the national cycle, we analyze outcomes in our 

model relative to the price boom it generates. 
realized price growth over the last year and expectations of

annualized price growth over the next 1 and 2–5 years. We

measure this relation by regressing movers’ 1- and 2–5-

year expectations in period 105 of the control simulations

against price growth in the prior four periods. The coeffi-

cients from these regressions of 0.127 and 0.042 are sim-

ilar to though somewhat smaller than the corresponding

values of 0.226 and 0.047 that Armona et al. (2019) find in

survey data (see their Table 5). 

6.3. Buyer cutoff rules 

Agents in the model are fully rational except that they

ignore the influence of historical market data on the home

purchasing decisions of other agents. The effect of this de-

parture from rationality on the model’s dynamics depends

on the extent to which the cutoffs that agents actually use

when deciding to buy, κn, j ( ̂  g t ) , differ from the constant

cutoff other agents assume they use, κ . In Fig. 10 , we plot

these cutoffs. Four features of this figure are relevant for

understanding the dynamics of our model. 

First, the true buyer cutoffs, κn, j ( ̂  g t ) , decrease in the ex-

pected growth rate of the demand shifter, ˆ g t . Intuitively,

potential buyers expect larger capital gains when the ex-

pected growth rate is high and are therefore willing to pur-

chase at higher prices. Therefore, the expected growth rate

of the demand shifter, ˆ g t , along with the demand shifter

itself, d t , both increase housing demand. 

Second, when ˆ g t is high, the cutoffs buyers actually use

are less than the constant cutoff that other agents be-

lieve they use. This error causes agents in the next pe-

riod to misattribute the speculative behavior of this pe-

riod’s buyers—who are purchasing due to high anticipated

growth—to an increase in the level of the demand shifter,

d t , instead. As a result, when expected growth is high at

time t , subsequent agents overestimate what the level of
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demand must have been at that time, i.e., ˜ d t > d t . Be- 

cause the demand process is persistent, this error raises 

the expectations of next period’s agents about the demand 

shifter, ˆ d t+1 , and its growth rate, ˆ g t+1 , leading movers to 

list their homes at a higher price. Thus, speculative buying 

raises subsequent house prices, causes overestimation of 

the demand shifter, and ignites positive feedback by raising 

the expected growth rate of next period’s potential buyers. 

Third, the slopes of the buyer cutoff functions, κn, j ( ̂  g t ) , 

are steeper for higher values of λ j . Intuitively, potential 

buyers with shorter horizons expect to sell sooner, so their 

demand is more sensitive to expected capital gains. As 

a result, short-term buyers disproportionately drive the 

positive feedback through which speculative buying today 

stimulates such buying next period. 

Finally, the buyer cutoffs for a given mover hazard are 

nearly identical for occupants and non-occupants. 16 Quan- 

titatively, the threshold of housing utility at which a pur- 

chase occurs does not depend on occupancy status. The 

only difference in housing demand between occupants and 

non-occupants with the same horizon is that the distri- 

bution of housing utility for the non-occupants is shifted 

to the left of that of the occupants. As a result, because 

the non-occupants use the same cutoff as the occupants, a 

smaller share of them end up buying a house. For a given 

mover hazard, non-occupants’ demand is therefore more 

elastic than occupants’ with respect to the demand shifter, 

d t , and its expected growth rate, ˆ g t . 

6.4. Impulse responses 

In Fig. 11 , we plot the impulse responses. As with the 

national U.S. cycle in Figs. 1 and 3 , the cycle in the model 

progresses through a boom, quiet, and bust (Panels A and 

B). 17 We use grey shading to mark the transition points be- 

tween these phases, defined as the peaks of volume and 

prices. The quiet lasts eight quarters, close to the duration 

in Fig. 1 and the correlation-maximizing lag in Fig. 2 . 

In the boom, demand rises because the demand shifter, 

d t , is higher and because the expected growth rate, ˆ g t , 

rises in response to price growth. Together, these chan- 

nels differentially stimulate buying from potential buyers 

with higher λ (Panel C) and non-occupants (Panel D). The 

overall increase in housing demand pushes up the share 

of listings that sell, πt (Panel E). Short-term buyers re-list 

their houses quickly, increasing the flow of listings during 

the boom (Panel F). Prices and volume increase as a re- 

sult. Tempering the volume boom is the decline in inven- 
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Fig. 11. Impulse responses. Impulse responses are average differences between log outcomes in control simulations and treatment simulations, in which a 

2-standard-deviation shock to εg 
t (the demand growth innovation) occurs in quarters 0 through 3. The shaded grey area denotes the beginning and end of 

the quiet. A short holding period is defined as less than or equal to 12 quarters and a long holding period is defined as greater than 12 quarters. 
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tory (Panel B), which occurs as the stock of unsold listings

diminishes. 

The qualitative behavior of volume, inventories, and

sale probabilities during the boom is similar in search and

matching models, such as Guren (2014) . The key difference

is the increasing flow of listings coming differentially from

short-term buyers (Panel F). This flow limits the decline

in inventories to 1.5 log points, amplifying and sustaining

the rise in volume. Relative to the price boom, this decline

in inventories is an order of magnitude smaller than in

Guren (2014) . Furthermore, the differential flow of short-

term listings leads to the short-term volume boom shown

in Panel C, which matches Fig. 4 . The disproportionate in-

crease in demand from non-occupants, together with the

overall rise in volume, produces the strong non-occupant

volume boom shown in Panel D that also matches Fig. 4 . 

In the quiet, demand begins to fall because the price

level has risen so high. Because they neglect time-variation

in the cutoff rule that other potential buyers are using,

agents misattribute demand growth during the boom en-

tirely to d t , though much of it comes from ˆ g t , the expected

capital gains channel. Eventually, agents over-estimate the

demand level so much and post prices that are so high

that sale probabilities start to fall (Panel E). Nonetheless,

movers increase their list prices throughout the quiet be-

cause they continue to revise upward their estimate of the

demand shifter for two reasons. First, because of past price

growth, the expected growth rate, ˆ g t , remains high, which

mechanically causes upward revisions to the expected level

of demand. Second, the sale probability, πt , remains high

even though it is falling, and these high realizations con-

stitute positive surprises about demand that cause movers

to increase their beliefs. Eventually, πt falls below its pre-

shock average, ending these upward revisions and the con-

comitant increase in list prices. 

One of the distinguishing features of the quiet in both

the model and the data is the sharp rise in unsold inven-

tories. At their peak, unsold listings are 1.4% above their

pre-shock level. The two causes of the excess inventories

are the fall in selling probabilities (Panel E) and the el-

evated flow of short-term listings continuing throughout

the quiet (Panel F), which matches the data in Fig. 6 . This

second cause is novel to our model and may explain why

inventories rise above their pre-shock level here whereas

they fail to do so in models lacking this channel, such as

Guren (2014) . 18 

The bust begins as movers cut list prices. Agents revise

down their expectations of the growth rate, which further

depresses demand and sale probabilities. However, because

they continue to believe that potential buyer demand is

independent of the expected growth rate, movers do not

cut prices enough to restore demand, and the bust con-

tinues over several periods. Volume falls below its pre-

shock level, as in Fig. 1 . The decline in ˆ g t leads to a
18 Our model understates the rise in listings during the quiet because of 

our simplifying assumption that each mover matches to a potential buyer 

regardless of the number of contemporaneous movers. With a more re- 

alistic matching function, such as the one in Guren (2014) , our model 

might also hit the peak of listings (relative to price growth) that appears 

in Fig. 3 . 

225 
smaller share of short-term buyers, depressing the flow of 

new listings (Panel F), which allows inventories to recover 

(Panel B). 

The model generates a second boom in prices, vol- 

ume, and listings in the last five years of the simulation. 

This second boom occurs because prices overshoot on the 

way down, as is common in models with extrapolative ex- 

pectations ( Hong and Stein, 1999; Glaeser and Nathanson, 

2017 ). Underpricing occurs when agents think that demand 

is lower than its true value. In this case, sale probabili- 

ties rise, and volume increases. This increase in demand 

disproportionately affects short-term buyers, so short-term 

volume and listings also rise during the second boom. 

6.5. Counterfactuals 

Many features of the impulse responses discussed 

above closely match the patterns observed in the data. 

However, the fact that our model matches these patterns 

does not directly speak to the role that speculation plays in 

generating those patterns. To quantify the contribution of 

speculation to the housing cycle, we rerun the simulation 

under three counterfactuals, each of which shuts down a 

different aspect of our baseline model. Impulse responses 

corresponding to Panels A–D of Fig. 11 are in Fig. 12 ; those 

corresponding to Panels E and F of Fig. 11 are in Figure IA4 

of the online appendix. 

6.5.1. Rational expectations 

In the fully rational counterfactual, agents no longer 

use the simplified model for potential buyer behavior in 

Eq. (3) . Instead, they correctly understand the problem that 

potential buyers are solving. As a result, they believe that 

the share of potential buyers at time t who would pur- 

chase at list price P is: 

1 −
1 ∑ 

n =0 

J ∑ 

j=1 

βn, j 

(
log P + log κn, j ( ̂  g t ) −d t −μn 

)
≡π(P, d t , ̂  g t ) .

Using this function, agents at time t correctly infer the 

past values of the demand shifter by equating πt ′ to 

π(P t ′ , d t ′ , ̂  g t ′ ) and solving for d t ′ . They calculate ˆ d t and ˆ g t 
using the Kalman filter in Lemma 1 . The mover value func- 

tion becomes: 

 

m ( ̂  d t , ̂  g t ) = sup 

P 

E 

(
π(P, d t , ̂  g t ) P + (1 + r m 

) −1 

× (1 − π(P, d t , ̂  g t )) V 

m ( ̂  d t+1 , ̂  g t+1 ) 
)
, 

where the expectation is over d t ∼ N ( ̂  d t , ˆ σ 2 
d 
) . By an argu- 

ment analogous to the proofs of Lemmas 2 and 4 , the op- 

timal price takes the form e 
ˆ d t p( ̂  g t ) , and a potential buyer 

buys when e δ ≥ κn, j ( ̂  g t ) P , although p(·) and κn, j (·) may 

differ from the corresponding functions in those lemmas. 

We compute impulse responses using the same pa- 

rameters and sequence of shocks in the baseline model. 

Results appear in Panels A–D of Fig. 12 . When expecta- 

tions are rational, prices no longer overshoot, inventories 

never rise above their pre-shock value, and the volume 



A .A . DeFusco, C.G. Nathanson and E. Zwick Journal of Financial Economics 146 (2022) 205–229 

Fig. 12. Impulse responses in counterfactuals. Impulse responses are average differences between log outcomes in control simulations and treatment 

simulations, in which a 2-standard-deviation shock to εg 
t (the demand growth innovation) occurs in quarters 0 through 3. A short holding period is defined 

as less than or equal to 12 quarters and a long holding period is defined as greater than 12 quarters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

boom lasts only four quarters and is only about one quar-

ter of its size in the baseline model. The short- and long-

horizon volume booms are nearly identical in size. In con-

trast, non-occupant volume continues to rise much more

than occupant volume, because non-occupant demand is

more elastic with respect to the demand shifter, d t . There-

fore, even when potential buyers have rational expecta-

tions, non-occupants react more strongly to the demand

shock underlying the impulse response, but this reaction

does not generate any positive feedback. 

In summary, the price bust and the rise in listings

above their initial value–two salient features of the data

in Fig. 3 –depend on departing from rational expectations.

These features appear in the baseline model but not the

rational version. Quantitatively, a large volume boom, and

one that is disproportionately short-term, likewise depend

on departing from rationality. An excess non-occupant vol-

ume boom does not. 

6.5.2. Walrasian market clearing 

In Online Appendix F.1, we solve a Walrasian version of

our model in which a mechanism selects a price P t each

period so that the number of potential buyers willing to

buy at that price equals the number of movers willing to

sell. We also describe technical changes to the model setup

and parameters that aid comparison to the baseline model.

We find that the equilibrium price is P t = e d t p( ̂  g t ) ,

where p(·) is a function. In contrast to the baseline model,

the demand shifter, not its expected value, directly affects
226 
prices. Here, demand from buyers directly pins down the 

price; in the baseline model, movers choose the price and 

demand pins down the share of listings that sell. As a re- 

sult, prices incorporate changes to demand more quickly 

with Walrasian market clearing. In the Walrasian model, 

agents believe that the equilibrium house price is P t = e d t ˜ p , 

where ˜ p is a constant. Therefore, when ˆ g t is high, equi- 

librium prices exceed what agents expect, which leads 

them to think mistakenly that d t is high. This force in 

turn pushes up ˆ g t+1 , which increases P t+1 . This positive 

feedback mechanism is similar to the one in the baseline 

model. 

The results are in Panels E–H of Fig. 12 . Prices and vol- 

ume both go through a large boom and bust cycle in the 

Walrasian model, as in the baseline model. However, vol- 

ume now peaks after prices, so there is no longer a quiet. 

The price boom is faster, with prices reaching their peak 

nine quarters after the shock instead of 15. Under Wal- 

rasian market clearing, prices react more quickly to new 

information, explaining the absence of the quiet and the 

shorter duration of the price boom. Listings rise in the 

Walrasian model, but listings and volume coincide due to 

Walrasian market clearing, so these two variables never 

diverge as in the baseline model. Finally, short-term and 

non-occupant volume continue to rise in a large and dis- 

proportionate fashion in the Walrasian model. 

In summary, many of the features of the baseline im- 

pulse response do not require departing from Walrasian 

market clearing, as they continue to appear in the Wal- 
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rasian extension. These features include large price and

volume cycles, high levels of listings while prices fall, and

disproportionate volume booms from short-term sales and

non-occupant purchases. However, the existence of the

quiet—a period right after the boom in which volume falls

while prices and listings rise–does require departing from

Walrasian market clearing. 

6.5.3. Absence of speculative buyers 

The last counterfactual shuts down speculation by ad-

justing the distribution of potential buyer types while leav-

ing the framework of the model unchanged. In particular,

we set βn, j = 0 for all n and j except for n = 1 and the

j for which λ j = 0 . 03 . All potential buyers are occupants

with a horizon of about eight years, which is close to the

average horizon among potential buyers in the baseline

model. By assigning all potential buyers the same (low)

value of λ, this counterfactual removes both short-term

buyers and the heterogeneity in holding periods that gen-

erates variation in the composition of buyers. We update κ
so that the demand error is still zero and keep other pa-

rameters unchanged. 

Panels I–L of Fig. 12 display the results. Prices and vol-

ume still go through a cycle, but the volume boom is three

times smaller, and the price overshoot almost disappears.

Listings fall 7%, much more than the decline of 1.5% in

the baseline model. There is a quiet during which list-

ings rise, but they reach a smaller value of 0.4% (versus

the 1.4% in the baseline model) at the end of this period.

Short-term volume rises slightly more than long-term vol-

ume because of the mechanical channel discussed in On-

line Appendix B.1, but by far less than the 7.8-fold relative

increase in the baseline model. Finally, non-occupant vol-

ume equals zero by assumption. 

In Online Appendix F.2, we explore the distinct roles of

short-term and non-occupant potential buyers in amplify-

ing the housing cycle. Removing either group attenuates

the housing cycle, but there is substantial overlap between

the two groups. If we eliminate short-term buyers while

holding constant the share of non-occupants, the housing

cycle becomes small, but if we eliminate non-occupants

while keeping constant the share of short-term buyers, the

housing cycle remains strong. These results suggest that

short horizons are the key amplifying force in the model,

as opposed to non-occupancy. 

While these counterfactuals suggest that removing

short-term potential buyers dramatically reduces the mag-

nitude of the cycle, they may overstate this effect be-

cause we conduct the counterfactuals using parameter val-

ues calibrated in the baseline model under the assump-

tion of exogenous trading horizons. During the 20 0 0–20 05

housing boom, it is possible that homeowners who origi-

nally expected to stay in their homes for many years de-

cided instead to sell early to exploit rising house prices.

We rule out this possibility in our model by assuming that

homeowners only list their homes after receiving an ex-

ogenous moving shock. To match the 20 0 0–20 05 volume

boom, our calibration compensates for this omission by

assigning excess weight to the shares of potential buyers

with high values of λ. Therefore, removing this large group

of short-term buyers from the model may have an outsized
227 
effect relative to removing the likely smaller group of such 

buyers who exist in reality. Nonetheless, our counterfac- 

tual demonstrates that removing speculators qualitatively 

attenuates the price bust and volume cycle and amplifies 

the decline in inventories during the boom. 

6.6. Transaction taxes 

In this section, we use our model to study an ad val- 

orem tax that buyers must pay at the time of purchase. 

The tax rate can depend on the buyer’s occupancy type 

n , so that a buyer pays a tax τn P when purchasing a 

home at price P . We denote the vector of tax rates by τ = 

(τ0 , τ1 ) . Analyzing capital gains taxes would complicate 

our model significantly, because contemporaneous movers 

who bought at different past prices would face different 

optimality problems and hence choose different list prices, 

so we leave that analysis to future work. 

Holding prices constant, the share of potential buyers 

who complete a purchase is lower in the presence of this 

tax. As a result, κ must go up, as we select this constant 

so that the average value of d t − ˆ d t equals zero. Intuitively, 

the threshold κ rises to reflect the decrease in housing de- 

mand from the new tax. We denote this new value κτ . By 

analyzing the mover value function, it is straightforward 

to show that the new optimal price is P t = e 
ˆ d t p( ̂  g t ) κ/ κτ , 

where p(·) is the same function that is in Lemma 2 . That 

is, prices scale down by a constant amount that reflects the 

reduced demand due to the tax. 

The reduction in housing demand operates through the 

cutoff functions, κn, j (·) . Due to the proportional nature of 

the tax, Lemma 4 continues to hold, but now these cutoff

functions depend on the tax. We denote them as κτ
n, j 

( ̂  g t ) . A 

potential buyer of occupancy type n and for whom λ = λ j 

buys at time t if: 

a ≥ log p( ̂  g t ) + log 

(
κκτ

n, j 
( ̂  g t ) 

κτ

)
+ 

ˆ d t − d t . 

We explore a tax that binds equally on all buyers, so that 

τ0 = τ1 , and a tax that affects only non-occupant buyers, so 

that τ1 = 0 . We consider taxes of 0.5%, 1%, and 5%, which 

span the tax rates in many large cities ( Chi et al., 2021 ). 

Table 6 reports a 5% tax on all buyers significantly at- 

tenuates the price cycle, reducing the bust from 8.2% to 

1.1%. It also reduces the volume boom, but this reduction 

is smaller than the corresponding one for prices. Smaller 

taxes of 0.5% and 1% also reduce the cycle amplitude, but 

these effects are much smaller. 

The last three columns of Table 6 report results for the 

tax on non-occupant buyers. This tax is a weaker instru- 

ment for attenuating the house price cycle: the 5% tax re- 

duces the price bust only to 5.8%, and the lower taxes have 

a smaller effect. The 5% tax nearly eliminates the non- 

occupant volume boom, reducing it to 0.1% from 12.3%. 

Therefore, targeting the tax to non-occupants limits its ef- 

ficacy in reducing the house price cycle, as even a tax 

that nearly eliminates the non-occupant volume boom still 

leaves much of the house price cycle. 

To understand the mechanism behind these results, 

in Figure IA5 in the online appendix, we plot the ad- 
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Table 6 

Outcomes for different tax regimes. We report 100 times changes in log outcomes between treatment and control simulations. We define 

the end of the quiet as the first local maximum in the impulse response of log prices, and we measure the following outcomes at that time: 

price boom and listings end of quiet. We define the end of the boom as the first local maximum in the impulse response of log volume 

before the end of the quiet, and we measure the following outcomes at that time: volume boom, listings end of boom, short volume boom, 

non-occupant volume boom, and sale probability boom. The price bust is the change from the end of the quiet to the first local minimum 

of the impulse response of log prices after the end of the quiet. The tax is relative to the purchase price, payable at time of sale. We alter 

κ in each column to maintain a zero demand error while keeping other parameters the same. The baseline values correspond to Fig. 11 . 

Tax on all buyers Tax on non-occupant buyers 

Outcome Baseline 0.5% 1% 5% 0.5% 1% 5% 

Price boom 14.5 13.1 12.2 9.7 13.5 12.8 12.6 

Price bust −8 . 2 −6 . 4 −5 . 1 −1 . 1 −7 . 0 −6 . 0 −5 . 8 

Volume boom 5.8 5.5 5.2 4.1 5.3 4.8 4.5 

Listings, end of boom −1 . 3 −1 . 2 −1 . 1 −1 . 0 −0 . 8 −0 . 8 −0 . 6 

Listings, end of quiet 1.4 1.3 1.2 0.6 1.2 0.9 0.9 

Short volume boom 14.1 13.7 13.2 10.3 13.5 11.8 11.4 

Non-occupant volume boom 12.3 11.7 11.1 8.9 7.5 2.3 0.1 

Sale probability boom 7.1 6.7 6.3 5.1 6.2 5.5 5.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

justed buying cutoffs, κκτ
n, j 

( ̂  g t ) / κ
τ , for both 5% tax scenar-

ios. Comparing this figure to Fig. 10 shows how each tax

changes housing demand. The 5% tax on all buyers raises

the cutoffs for the λ = 0 . 5 group by about half a stan-

dard deviation ( σa ), which makes the λ = 0 . 17 group more

marginal than before. Therefore, the tax effectively skews

the composition of buyers towards those with longer hori-

zons. The tax on non-occupants similarly raises the cutoffs,

but only for non-occupants. As a result, both the λ = 0 . 5

occupants and the λ = 0 . 17 non-occupants are marginal.

Therefore, many of the buyers with the shortest horizons

are still active in the market, which provides an explana-

tion for why this tax has a weaker effect. 

7. Conclusion 

In this paper, we present evidence that speculators in

general and short-term speculators in particular play a cru-

cial role in the housing cycle. This evidence raises addi-

tional lines of inquiry. 

First, do the expansions in credit that typically accom-

pany housing booms appeal disproportionately to short-

term investors? Barlevy and Fisher (2011) document a

strong correlation across U.S. metropolitan areas between

the size of the 20 0 0s house price boom and the take-up of

interest-only mortgages. These mortgages back-load pay-

ments by deferring principal repayment for some amount

of time and thus might appeal to buyers who expect to

resell quickly. The targeting of credit expansions to short-

term buyers might explain the amplification effects of

credit availability on real estate booms documented by

Favara and Imbs (2015) , Di Maggio and Kermani (2017) ,

and Rajan and Ramcharan (2015) . Mian and Sufi (2022) ex-

plore this channel in contemporaneous work. 

A second line of inquiry concerns tax policy. While

we analyze a fixed transactions tax in this paper, in the

spirit of Tobin (1978) , Stiglitz (1989) , Summers and Sum-

mers (1989) , and Dávila (2015) , natural alternatives such

as a short-term capital gains tax might discourage housing

speculation by lowering expected after-tax capital gains.

However, such taxes discourage productive residential in-

vestment as well. Is this tax optimal, and if not, what type
228 
of tax policy would be better? It is also unclear empirically 

whether transaction and capital gains taxes would partic- 

ularly discourage short-term investors, given that the inci- 

dence of this tax might fall more on buyers than sellers. 

A third research question involves new construction, 

which is absent from our model. In a static model, 

Nathanson and Zwick (2018) predict that undeveloped land 

amplifies house price booms by facilitating speculation by 

developers. Developers have short investment horizons be- 

cause the time from land purchase to home sale ranges 

from a few months to a few years. Moreover, because de- 

velopers do not receive housing utility, their payoffs re- 

semble those of the non-occupants in our model. Adding 

construction to the model in this paper might further clar- 

ify the role of land markets and new construction in hous- 

ing cycles. 

Supplementary material 

Supplementary material associated with this article can 

be found, in the online version, at doi: 10.1016/j.jfineco. 

2022.07.002 . 
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